
Journal of Statistical Physics, VoL 34, Nos. 5/6, 1984 

Fractals in Physics: Squig Clusters, Diffusions, 
Fractal Measures, and the Unicity of 
Fractal Dimensionality 

Benoi t  B. Mandelbrot  1 

Received September 30, 1983 

The three topics discussed in this paper are largely independent. Part 1: Fractal 
"squig clusters" are introduced, and it is shown that their properties can match 
to a remarkable extent those of percolation clusters at criticality. Physics on 
these new geometric shapes should prove tractable. As background, the author 's  
theories of squig intervals and squig trees are reviewed, and restated in more 
versatile form. Part 2: The notion of "latent" fractal dimensionality is intro- 
duced and motivated by the desire to simplify the algebra of dimensionality. 
Scaling noises are touched upon. A common formalism is presented for three 
forms of anomalous  diffusion: the ant  in the fractal labyrinth, fractional 
Brownian motion, and L~vy stable motion. The fractal dimensionalities com- 
mon to diverse shapes generated by diffusion are given, in Table I, as functions 
of the latent dimensionalities of the support  of the motion and of the diffusion 
itself. Part 3: It is argued that every fractal point set has a unique fractal 
dimensionality, but it is pointed out that many fractals involve diverse combina- 
tions of many fractal point sets. Such is, in particular, the case for fractal 
measures and for fractal graphs, often called hierarchical lattices. The fractal 
measures that the author  had introduced in the early 1970s are described, 
including new developments. 
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0. INTRODUCTION: IN PRAISE OF EXPLICIT GEOMETRY 

It is impossible to survey the present role of fractals in statistical physics 
because this role is changing and expanding too rapidly, and there is no 
need to summarize the basic ideas because they have become widely known 
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and used. The present paper is, instead, an informal discussion of a number 
of individual topics of very active current interest, as listed in the abstract. 
Some were actually part of my presentation at Statphys 15, while others 
respond to questions that were asked there. 

A theme that links these topics is that the usefulness of explicit and 
constructive geometry should again be recognized by physicists. Blind 
analytic manipulation is not enough. Physics is of course rife with quanti- 
ties that originated in geometry; unfortunately, most are used only in 
analytic relationships. Thus, after I had conceived fractal geometry, (t-3~ 
and used it to study mountains and other visible and well-describable 
natural shapes in natural space, its first effect upon physics was to provide 
yet another analytic quantity to evaluate: the fractal dimensionality D. The 
disregard of geometry is the root of many confusions. For example, the 
various disputes that arise about the value of D, with claims that D can 
take either of two or more values for the "same fractal," all spring from the 
neglect of geometry. In some cases, this ambiguity merely confirms or 
reveals that several different shapes (i.e., compact point sets) are in fact 
inherent in the same physical problem. In other cases, some of these values 
concern statistical populations of shapes, whereas dimensionality should 
carefully be kept as a property of sample shapes. If explicit geometry is kept 
in mind throughout, such errors should be avoided, and the field's progress 
should be swifter and smoother. 

Scaling geometry is a genuine geometric counterpart to scaling analy- 
sis. The contention that mathematicians have reduced geometry to analysis, 
deserves nothing but scorn. 

A small proportion of this paper is a straight exposition of parts of 
Ref. 3, rearranged very differently; much is a substantial restatement or is 
completely new; and substantial portions represent a change of mind. FGN 
will be a self-explanatory acronym for Ref. 3. Since the paper deals with 
several separate topics, a certain amount of repetition was left in to make it 
easier to scan. 

This paper will continue in this journal 's issue devoted to t h e  
Gaithersburg Conference on Fractals in the Physical Sciences. 

1. PART ONE: FRACTAL SQUIGS AND A NEW MODEL OF 
PERCOLATION CLUSTERS 

Many shapes in physics, e.g, self-avoiding random walks and percola- 
tion clusters, are usefully approximated by random scaling fractals. How- 
ever, the construction of these fractals is not only not recursive, but is very 
indirect. They are the limits, as the cells in a lattice are downsized to 0, of 
broken lines drawn on these lattices (see FGN, Chapter 36). This is one 
reason why the above shapes are difficult to simulate and difficult to 
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handle analytically. A recursive fractal model of percolation clusters is 
proposed in FGN, Chapter 13(4~; it has proven useful, but it is not random. 

To meet the related challenges of modeling the self-avoiding random 
walks and the self-avoiding river trees, I introduced in 1978 (s~ a very 
different new family of fractals, which are both recursively constructed and 
random; I now call them "fractal squig intervals and trees." Their theory is 
sketched in FGN, Chapter 24, and in Section 1.2 below. 

But the underlying idea goes beyond "intervals," and I have recently 
extended it to percolation, by introducing "fractal squig clusters," as 
described in Section 1.1. Then Section 1.2 examines one by one the "menu" 
of basic ideas that underlie the notion of squig. 

1.1. A Fractal Squig Model for Percolation Clusters in the Plane 

1.1.1. A New Construction. Fractal dimensionality takes the value 
log8 / log3~l .8928  for the Sierpinski triadic carpet, and many authors 
(Refs. 6 and 7 and FGN, Chapter 24 gives the references) find essentially 
the same value for the percolation clusters in the plane. Nevertheless, the 
carpet is not at all suitable as a model of the clusters. First of all, the 
carpet's topology is all wrong: it has no dangling bonds, and it is infinitely 
ramified (FGN, Chapter 14; see also Ref. 8), while percolation clusters are 
finitely ramified (see Section 1.1.7, also Refs. 8 to 10). Moreover, define a 
"ring" as a portion of a cluster that is multiply connected (between any two 
points there are at least two distinct paths) and is maximal (it does not 
extend into a larger multiply connected portion). We see that the Sierpinski 
carpet's ring coincides with the carpet, while percolation clusters form 
multiple rings, each having a fractal dimensionality near 1.7. (10 

The idea of the squig construction is to leave carpet's D unchanged, 
while it is "thinned out" at random to give it the desired topological 
properties, by deleting in recursive manner as many bonds as necessary, 
but no more. There are many ways of proceeding, among which I chose the 
following one. 

In a preliminary step, replace the usual carpet by a "dual" obtained by 
viewing a finite approximation to the carpet as a collection of black 
squares, and joining the centers of any two squares in the carpet that share 
a side. The approximate carpet can be viewed as the sum of eight subcar- 
pets. Each subcarpet is linked to each of two neighbors by very many 
bonds, which is why the carpet itself is infinitely ramifiedl To achieve finite 
ramification, one deletes all these bonds, except one; then one does the 
same with the sub-subcarpets within a subcarpet etc . . . .  It is proposed 
that this operation be called "decimation." 

Next, dangling bonds are "manufactured" via a different rule of 
deletion, which it is proposed to call "separation." One views the already 
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decimated carpet as made of 8 subcarpets, plus 8 bonds linking neighboring 
subcarpets. With some prescribed probability s, one separates one of these 
bonds (with equal probabilities for the eight possibilities), and with the 
probability 1 - s  one separates nothing. This rule of separation is moti- 
vated physically in Section 1.1.3. One proceeds in the same way with each 
part. Of course, it is best to perform both decimation and separation at 
each construction stage before proceeding to the next stage. 

The squig cluster is defined as the outcome of this construction. By 
design, the overall dimensionality remains D s - - l o g S / lo g 3 ~ l . 8 9 2 8 ,  as 

desired, and the topology is as desired. Now, let us dig deeper, by investigat- 
ing fractal dimensionalities, then ramification properties, for several of the 
par.ts of the clusters. 

1.1.2. Squig Intervals in the Squig Cluster. When the probabil- 
ity of separation is s = 1, the cluster in Section 1.1.1 reduces to a tree, that 
is, any two points in the squig are connected by a single path in the squig. 
A renormalization argument to be reported elsewhere (1~ finds that the 
fractal dimensionality of these individual paths in a squig cluster is D1~  1. 
293. For various somewhat heuristic reasons (12~ the desired value is the 
dimensionality 4 /3  of the self-avoiding random walks. Therefore, D 1 
is nearly as desired. 

When s < 1, however, the squig is not a tree, and in general two given 
points are linked by many paths. I claim that there is a natural way of 
choosing at random among the paths between any two points. One should 
raise s to 1, that is, one should separate each ring in the squig that had 
failed to be separated. This reduces the squig cluster to a tree. The natural 
path between any two points should then  be taken along this tree; hence 
the path's fractal dimensionality takes the above-mentioned desirable value 
D 1. This tree would best be called "skeleton," but this may sound awkward 
since it does not include the backbone. Let it be called "current orbits squig 
tree." 

1.1.3. Justification of the Notion of Current Orbit by Kirchhoft 
Laws. Let me now justify the procedure in 1.1.2, and thereby also help 
justify the definition of separation given in 1.1.1. The best is to start with 
the case where s = 0, so that initially there is no separation anywhere. Take 
two distinct points P'  and P" in the cluster, and assume that they lie in 
different eighths of the cluster. (If not, they necessarily lie in different 
eighths of some subcluster, and it suffices to zoom in on the largest such 
subcluster.) In the "renormalized" approximation, our cluster is a ring of 8 
beads with 8 bonds between them, and the points P'  and P" each lie in one 
bead. The numbers of beads one must cross to go from P'  to P "  counter- 
clockwise (respectively, clockwise) being written as o § - 1 and ~ -  - 1, the 
quantities o + and o -  will be called + distance and - distance between P' 
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and P". Now set a voltage difference between P'  and P" and follow the 
path of a random electron. The probability of its flowing in the + or - 
directions is proportional to the corresponding current intensities. There- 
fore, by the Kirchhoff laws, the probability of proceeding in the + 
(respectively, the - )  direction is o - / 8  (respectively, 0+/8). These are 
precisely the probabilities implemented by my separation algorithm. 

1.1.4. Decomposition of a Cluster into Rings, Glue Bonds, and 
Dangling Bonds. Like many physicists (e.g., Scott Kirkpatrick (6~) I favor 
decompositions of a graph that are intrinsic to the graph itself. In this light, 
a cluster decomposes into portions I shall call "rings" (see above), "glue 
bonds," and "dangling bonds." "Dangling bonds" can be disconnected 
(recursively) from the rest of the cluster by severing one link point. "Glue 
bonds" connect two or more rings to each other. 

Fig. 1. Part of a squig cluster (5) matched to a two-dimensional percolation cluster. 
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It is easy to see that the fractal dimensionality D R of individual rings is 
a continuously decreasing function D R (s) of the probability s of separation. 
It is clear, moreover, that for s = 0, one has DR(s ) ---- Ds~1.8928, and that 
for s = 1 - e, one has D e = D1~1.2928 (indeed, at this limit a ring is 
essentially reduced to two squig intervals strung together). Therefore, DR(s ) 

can be adjusted to take any desired value D R between D1~1.2928 and 
D s ~ 1 . 8 9 2 8 .  A renormalization argument (t~ has determined the function 
DR(s ) explicitly, and finds it is nearly linear. When s~0.4 ,  the fractal 
dimensionality of the ring takes the desired value ~ 1.7. See Fig. 1. 

D s is also the fractal dimensionality of all the rings taken together, of 
all glue bonds, and of all dangling bonds. To prove this, it suffices to apply 
the basic box-counting argument: at the limit of infinite interpolation each 
subsquare of the unit square that intersects the carpet also intersects each 
of these three collections of bonds. Thus, the quantity N in the expression 
D = log N/ log  b is the same for our three sets. 

Finally, the relation between linear size and number for rings is the 
same as reported in FGN,  p. 117: it is hyperbolic with D s as exponent. 

1.1.5. Two-Point Backbone and the Set of its Glue Bonds. The 
rings etc. in 1.1.4 and the current orbits tree in 1.1.2 are among the multiple 
aspects of the broad intuitive notion of backbone. This notion digs deep 
into the geometric structure of a cluster, but the term "backbone" itself has 
been overused in contradictory ways, and should no longer be used without 
being specified further. Let "backbone from P '  to P .... denote the portion 
of the cluster that carries current when a voltage difference is set between 
two prescribed points on plates P '  and P " .  Clearly, this backbone decom- 
poses into b-rings, b-glue bonds, and b-free bonds, where b stands for 
backbone. 

It is easy to show tha t  this backbone's fractal dimensionality is D R. 
This is obvious when P '  and P "  are two points on the same cluster ring. In 
other cases, the proof consists in showing that the backbone's D is neither 
less than D R (because the b-rings' dimensionality is DR) nor more than D R 

(because the backbone can be imbedded in a suitable collection of rings). 
Now consider the set of glue bonds in a backbone. It is of central 

importance to the solution of the Ising problem on the cluster, and 
theory (t3) suggests that its fractal dimensionality is 0.75. For my squig, a 
renormalization argument (t~ finds for the fractal dimensionality of this set 
a function varying near-linearly from 0 to 1.2928. Selecting s to fit the 
backbone dimensionality, that is, s~0.4,  also reproduces the desired back- 
bone glue dimensionality. 

1.1.6. A Harmless Discrepancy Concerning Closure. Define 
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the "closure" of a lattice by adding all the bonds whose end points both 
belong to the lattice. The closure of a squig cluster reconstitutes the original 
Sierpinski carpet, hence includes no dangling bonds. To the contrary, 
actual percolation clusters at criticality include dangling bonds even after 
closure. This discrepancy need not be significant, however, because when 
two points are far from each other along the cluster, it need not matter that 
they are close together in Euclidean distance. Thus, while it is easy to 
generalize the squigs to allow the closure to be random with dangling 
bonds, this generalization is not explored here. 

1.1.7. The Order of Ramification of the Squig Clusters and their 
Parts. The notion of ramification may not be familiar to all readers and it 
is somewhat tricky; therefore, it deserves more than a minimal discussion 
here. The original definition of ramification, Which we shall see is still the 
best, proceeds by interpolation. However, physicists who work with infi- 
nitely extrapolated structures on a lattice prefer a definition based on 
extrapolation, (8'9) and we shall start this way. A structure's order of 
ramification at a site P belonging to it is the quantity R(P) defined as the 
smallest number of bonds which one must delete in order to disconnect an 
arbitrarily large portion surrounding P from the rest of the structure. 

Consider a squig cluster in this light. When the site is arbitrarily 
selected on this cluster, it is almost certain that at some early or late state of 
extrapolation, a square containing P will be separated from all its neighbor- 
ing squares except 1. Therefore the order of ramification is R(P)= 1 at 
almost all points. In other words, R(P) > 1 holds for a vanishing propor- 
tion of the points. This was to be expected, because R(P) > 1 only holds on 
the infinite ring, and we know that the dimensionality of the infinite ring is 
DR, like that of any individual ring, hence is strictly Smaller than the 
dimensionality D s of the whole infinite cluster. Recall the analogous 
Euclidean situation: when a point has been chosen at random in a plane in 
space, it is known to have a zero probability of falling on a given line in 
that plane. 

Next, when P is chosen at random on an infinite ring, one finds that it 
is almost certain that an arbitrarily large portion of the cluster can be 
disconnected by deleting R(P)= 2 bonds. By constraining the site even 
more tightly, one can pick some points where R = 3, or even fewer points 
where R = 4. 

An earlier fractal model of the ring that has been widely discussed 
(FGN, p. 132 and Ref. 9) is the Sierpinski gasket. Extrapolative ramifica- 
tion finds in that case that R(P)= 3 for almost all sites. However, R(P) 
= 4 when the very special property holds, that at every stage of extrapola- 
tion, P remains an apex common to two triangles. Thus, all the rings of the 
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gasket are attached in three points to the outside, while most of the rings of 
my cluster are attached in two points. The latter structure is the more 
desirable one, hence the squig is the more desirable model. 

Pondering the above applications, we see that the extrapolative defini- 
tion of ramification has a major defect: unless extreme care is exerted, it 
tends to pick out the points when R(P) attains its minimum Rmi n. For the 
gasket, this was innocuous, but for the squig cluster, it was highly mislead- 
ing. It is therefore useful to go on to sketch the interpolative ramification 
devised in the 1920s by the mathematicians Urysohn and Menger (FGN, 
Chapter 14). Around each point P on an infinitely detailed fractal curve ~f, 
they examined increasingly small balls of radius r. In each ball, they 
considered all the smaller neighborhoods of P that are bounded by a loop 
f (Jordan curve) that surrounds P. The smallest number of points where 

intersects ~f is a function R(P,r). The limit of that function for r ~ 0  
defines the order of ramification R(P). 

It is easy to see that the squig cluster includes points of order of 
ramification equal to 1, but also sharply decreasing numbers of points 
where the order of ramification is equal to 2, 3, or 4. For example, 3 is at 
almost all of the 7 (or 8) points that joint the eights of the largest ring in the 
cluster, the 7 (or 8) points that joint the eights of each eight, etc. 

1.1.8. Clusters Above or Below Criticality. One can proceed as 
in FGN, p. 129. Just above criticality, there is a length scale ( such that 
percolation clusters much larger than ~ are homogeneous and those smaller 
than ( are indistinguishable from critical clusters. Simulations (14) reveal 
that the transition at ~ is very sharp. Therefore, it may suffice to take a grid 
of square cells of side 4, to position statistically independent squig clusters 
in each cell, and to activate a randomly selected bond between neighboring 
clusters. This process creates an infinite cluster, but the size distribution of 
clusters of side < ~ is unchanged. 

To simulate the situation just below criticality, the only change is that 
neighboring clusters of size ~ in the above square grid are left separated. A 
smoother transition is achieved by making the probability of separation s 
into a function of size: constant over small sizes then drifting towards 1 for 
larger sizes. Other rules of change of s with size achieve other cluster size 
distribution. 

1.2. General Principles Underlying the Notion of Side Tied Squig 

In Section 1.1, the general principles of construction of squigs enter 
together, in one specified combination. Now they will be introduced one by 
one, to demonstrate the versatility achievable by suitable selections from a 
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single ve ry  large "menu." It will be seen that a squig's topology may be 
either left to be determined by chance, or prescribed in advance. In the 
latter case, the squig may be an interval or a straight line, but it may also 
be a tree or a collection of rings with or without dangling bonds. If it is a 
curve, it may be either finitely or infinitely ramified, but the stress will be 
on the former. (It may also be a surface, but this generalization is not 
tackled here.) 

Recursivity is built into the squig construction by starting with a 
triangular or square lattice whose cells are then collected in super cells of 
size b k, where b (the base) and k are integers. (One can also use more 
general lattices that "pertile" in the sense of FGN,  p. 46, but none will be 
mentioned here.) Recursivity allows renormalization group arguments to be 
carried out. I believe them to be mathematically rigorous, and this belief 
has been explicitly confirmed in several basic cases, in the papers by 
J. Peyri6re. (15) These papers do not use the term "renormalization." How- 
ever, the basic idea is there. In fact, it has long been known to mathemati- 
cians. To take an example, renormalization underlies the search for central 
limit theorems of probability theory, where the fixed points have been 
identif ied by Cauchy,  and the domains  of a t t rac t ion (physicists '  
"universality") by P. Chebyshev and Paul L~vy. 

While earlier papers (5'15) and FGN Chapter 14 proceed by interpola- 
tion, here we proceed by extrapolation, and "fractal" will denote a finite 
approximation to a mathematical fractal. 

Squigs are not drawn on the original triangular or quadratic lattice, but 
on a hexagonal or square lattice of "potential bonds," obtained by linking 
the centers of "neighboring cells" in the original lattice, that is, of cells that 
share a side. Some bonds are then deleted at random, in recursive fashion, 
using one of two distinct processes: "decimation" and "separation." The 
remaining bonds are called "activated." The construction is tractable 
because the processes of decimation and separation will be statistically 
independent. 

1.2.1. Pure Decimation on a Triangular Lattice of Base b = 2. A 
Plane-Filling Squig Tree. The first construction stage takes b 2 triangular 
lattice cells C(0) that fit into a twice larger triangle C(1), and activates all 
the b 2 bonds between neighboring C(0)'s. The result is a small Y-shaped 
tree. The second construction stage takes b 2 copies of C(1) that fit together 
in a triangle C(2) whose linear size is b times larger. The boundary between 
any two neighboring C(1) within C(2) is crossed by b potential bonds; one 
of them is activated and the remaining b - 1 are decimated. The kth stage 
takes b 2 statistically independent replicas of C ( k -  1) to make a b 2 larger 
triangle C(k). The boundary between any two neighboring C ( k -  1) is 
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crossed by b k-~ potential bonds; one of them is activated, and the other 
b k-1 _ 1 are decimated. 

The final outcome is a connected fractal, a "squig tree," that can be 
said to fill the whole plane, hence is of dimensionality D = 2. 

Digression. To be more precise, let a squig tree be drawn by interpola- 
tion, so that rigorous Hausdorff dimensional arguments can be carried out. 
One finds that one deals with the whole plane, minus a denumerable 
collection of intervals, whose removal chops up the plane into a tree. Thus, 
one deals with a set of dimensionality D = 2, minus a set of dimensionality 
D = 1. One is reminded of the structure of the irrational numbers on [0, 1], 
which are the difference between an interval (D = 1) and a denumerable 
collection of rational points (D = 0). One is also reminded of the lengthen- 
ing list of fractals whose fine structure is described intrinsically as the sum 
or difference of several partial fractals, hence involves several fractal 
"eigendimensionalities" (see Section 3.3 below, FGN,  p. 151 and Ref. 16). 
"Closing" all the bonds that are decimated in the present construction 
yields the addend that has the largest eigendimensionality, which in the 
present case is the whole plane. 

1.2.2. Pure Decimation on a Square Lattice of Base b = 2. A 
Plane-Filling Squig Ring. The first construction stage takes b 2 square 
lattice cells C(0) that form together a b times larger square C(1), and 
activates the b 2 bonds between neighboring C(0)'s. The result is a small 
square ring. The words that describe the following stages are exactly as in 
1.2.1. 

The final outcome, again, is connected and fills the whole plane, but is 
otherwise very different from the final outcome in 1.2.1. It is a connected 
collection of fractal rings, that is, of rings upon rings, without dangling 
bonds. 

1.2.3. Pure Decimation on a Triangular Lattice of Base b = 3. A 
Plane-Filling Squig Cluster. All the words that describe the construc- 
tion are the same as in 1.2.1. 

The final outcome, again, is connected and fills the whole plane, but is 
otherwise very different from the result in 1.2.1. It is made of rings, glue 
bonds, and dangling bonds. 

1.2.4. Discussion of Generalizations, in the Plane and Beyond. 
To extend pure decimation to higher values of b and to Euclidean spaces of 
dimensionalitY > 2 is easy. The next important operation of squigs shown 
is "separation." It is a form of deletion that differs from decimation. 
Starting with a plane-filling structure obtained by pure decimation, separa- 
tion can have either of several effects. In 1.2.5, prescribed separation serves 
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to chop up a single plane-filling infinite squig into a collection of finite 
squigs. In 1.2.6, randomly positioned separation serves to open all the rings 
of the fractal squigs drawn in 1.2.1, 1.2.2, and 1.2.3, thus yielding either a 
plane-filling tree or a collection of bounded trees. In 1.2.7, separation is 
randomly decided and randomly positioned. Thus, it serves to obtain either 
a plane-filling mixed cluster, or a collection of mixed clusters. The latter are 
the squig clusters proposed in 1.1 as models for percolation. 

1.2.5. Example of Decimation and Prescribed Separation on a 
Square Lattice of Base b = 3. Sierpinski-Carpet-Filling Squig Rings. 
In this case, the construction stage takes 9 square lattice cells C(0) that 
form together a 3 times larger square. These squares are linked by 12 
potential bonds. All the 4 bonds that involve the central square C(0) are 
"separated," and the 8 other bonds are activated. The result, to be denoted 
by C(1), is a square, each side of which is made of two colinear bonds. The 
second construction stage takes 9 copies of C(1) that fit together in a 3 
times larger square. There are 36 bonds. One begins by separating all the 12 
bonds that involve the middle square C(1). This leaves 3 potential bonds 
between any two neighboring C(1) that are not separated. One of these 
bonds is activated and 2 are decimated. The kth stage takes 9 statistically 
independent replicas of C ( k  - 1) that fit into a 3 times larger square. The 
middle replica is separated from the rest. This leaves 3 k- 1 potential bonds 
between any two neighboring C ( k  - 1) that are not separated: one of these 
bonds is activated and the other 3 k- 1 _ 1 are decimated. 

The final outcome is an infinite collection of nested squig ring struc- 
tures. One can define the "closure" of this fractal as the lattice obtained by 
completing all the bonds that join two points in the structure. This closure 
is a finite lattice approximation to a Sierpinski carpet. The fractal dimen- 
sionality of each structure is the familiar D = log 8 / log3~1 .89 .  The num- 
ber-size relation is also familiar: as the linear size of a structure is multi- 
plied by 3, the number is multiplied by 8 = 3 D. 

Digression. The digression in 1.2.1 is also relevant here. The above 
structure is a Sierpinski carpet of fractal dimensionality D = 1.89, minus 
the decimated set of dimensionality D - -  1 that is used to chop up the 
carpet. 

1.2.6. Systematic Randomly Positioned Separations, Superim- 
posed upon the Decimations in 1.2.2, 1.2.3, and 1.2.5. Squig Trees. 
Resuming the construction in 1.2.2, let us modify it by "separating" each 
ring in one place. In the first stage, one of the four bonds between 
neighboring C(0)'s is chosen at random (equal probabilities) and is sepa- 
rated, while the remaining three bonds are activated. Similarly one of the 
four nondecimated bonds between neighboring C ( k -  1)'s is chosen at 
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random and separated while the remaining three are activated. This system- 
atic random separation creates an infinite squig tree. 

The same process can be used to modify the construction in 1.2.3, 
except that there are six nondecimated bonds between neighboring C ( k  - 

1)'s. This systematic random separation again creates an infinite squig tree. 
The same process can also be used in 1.2.5, except that there are eight 

nondecimated bonds between the nonseparated neighboring C ( k -  1)'s. 
This systematic random separation creates an infinite collection of bounded 
random squig trees. 

1.2.7. Randomly Decided and Randomly Positioned Separa- 
tions, Superimposed upon the Decimations in 1.2.2, 1.2.3, and 1.2.5. 
Squig Clusters. The next step is obvious: instead of performing ran- 
domly positioned separations in all cases, as done in 1.2.6, or in no ease, as 
done in 1.2.2, 1.2.3, and 1.2.5, let us perform separation in some cases, 

chosen at random, independently of each other. This requires introducing a 
freely adjustable parameter s: the probability of performing a separation. 

The final outcome combines rings, glue bonds, and dangling bonds. 
When the point of departure is as in 1.2.5, the point of arrival is the squig 
cluster in 1.1. 

1.2.8. Squig Intervals. A squig interval is a path that joins any 
two points on a squig tree. All other squig fractal curves, e.g., trees and 
squig clusters, can be viewed as unions of squig intervals. The striking 
finding is that, in all the above listed examples, the squig's intervals' fractal 
dimensionality D 1 is very close to 4/3.  

The construction in 1.2.1 yields squig intervals with D t = log 2.5/log 2 
= 1.3219. The reason is that the number N of C ( k -  1) that belong to a 
C ( k )  and contain a squig interval satisfies ( N )  = 2.5. From a renormali- 
zation group argument, (5) I inferred that D = l o g ( N ) / l o g 2 ,  which Pey- 
ri~re (~s) shows to be an exact result. 

The construction in 1.2.2 yields squig intervals with ( N ) =  13/3, 
hence D~ = l o g ( N ) / l o g 3  = log(13/3) / log3 = 1.3347. 

In the construction in 1.2.3 the formula for D is more complicated. 
One finds that 2 D is the leading eigenvalue of a "transfer matrix ''(~6) with 
the lines 5 / 4  and 3 / 4  (top) and 6 / 4  and 6 / 4  (bottom). This leading 
eigenvalue is 2.4430, hence D e = 1.2886. The other eigenvalue is 0.030, and 
it contributes a slight corrective term. 

The construction in 1.1 (i.e., the last stage in 1.2.7) had yielded squig 
intervals with D t --- log 4.1266/log 3 ~ 1.2928. 

N e m a r k  A. The value D = 4 /3  is of course also known to occur in 
self-avoiding random walks, SARW. This is likely to indicate that the 
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SARW and squig constructions both underscore some vital but not yet 
identified mathematical property of the plane. 

Ro ma rk  B. In FGN,  p. 225, a direct construction of a squig interval 
was motivated by my unhappiness with Wiener's construction of the 
Brownian motion in the plane and with yon Koch's construction of the 
snowflake curve. Both constructions involve recursive interpolation, but 
approach different limit points at very different rates. Indeed, they begin 
with exactly known positions P(0) and P(I )  and totally unspecified interme- 
diate positions. Then, they pin down exactly the intermediate positions for 
dyadic values of t, following the order P(2-1),  p(2-2),  p(3.2-2), etc . . . . .  
For the purpose of the physicist's renormalization, as well as of the 
mathematician's search for elegance, it would be far preferable to define a 
curve as the limit of str ips whose width is uniform at each stage and 
narrows down to 0. This goal is achieved by the squigs. 

1.2.9. Infinitely Ramified Squigs Constructed Recursively. The 
idea is of course to achieve infinite ramification, but to a degree smaller 
than in the original uncut plane. To give an example of how this can be 
done recursively, let us start with the construction in 1.2.5. In the second 
stage, between any two neighboring C(1) that are not separated there are 
three potential bonds. In 1.2.5, we activate N = 1 of these bonds, but the 
number of activated bonds can be chosen differently. It may be either 
prescribed and > 1, or random with ( N )  > 1. When N is random, the 
values to be used at different locations are to be statistically independent. 
Once N is chosen, activate a combination of N bonds selected at random 
among all the possible combinations. In the kth stage, the 3 k potential 
bonds between neighboring C ( k  - 1) are activated according to a hierarchi- 
cal screening scheme. The first screening separates the 3 k bonds into three 
groups of three, and decimates all but N of them. Then each nondecimated 
group of 3 k-2 bonds is screened separately, and all but N are decimated. In 
this way, each nondecimated bond in 1.2.5 is replaced (asymptotically) by a 
Cantor dust of dimensionality log~N) / log  b. 

2. PART TWO: LATENT FRACTAL DIMENSIONALITY, 
NOISES, AND DIFFUSIONS 

2.1, Algebra with Fractal and Latent Fractal Dimensionalities 

A striking characteristic of the notion of fractal dimensionality D is 
that, under suitable circumstances, a very precise geometric meaning at- 
taches to the sum of the dimensionalities of two distinct sets, their product, 
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their quotient, their difference, and their cosum. The cosum is defined as the 
sum of the codimensionalities, which are defined in the Euclidean space of 
dimensionality E by the formula C = E -  D. A few examples of each of 
these operations are classical and are discussed in FGN, and several new 
examples have emerged recently. A selection is included in Table I. Cosums 
and products are also discussed separately in 2.1.2 and 2.1.3. 

Under certain circumstances, these various operations combine several 
dimensionalities by very simple rules, but under other circumstances the 
rules are complicated. This is very irritating. However, a fact has been 
apparent from the outset--for example, in the work of Hutchinson ~17)- 
and is becoming increasingly clear and important. The fact is that all these 
complications disappear if a "latent fractal dimensionality" is attached 
suitably to certain mechanisms that generate fractal sets. In the case of 
fractals imbedded in the Euclidean space R E, the latent value is allowed to 
be either > E or < 0, and bears the following relation to the "actual" 
value. 

Whenever the latent fractal dimensionality is > E, the actual fractal 
dimensionality is E: 

Whenever the latent fractal dimensional is < 0, the actual fractal 
dimensionality is 0. 

2.1.1. Loss of Equivalence Between the Fractal and the Haus- 
dorff Dimensionalities. One recalls that an important role in the devel- 
opment of fractal geometry has been played by the Hausdorff dimensional- 
ity DH, a quantity that necessarily satisfies 0 < D H ~< E. Now, by the very 
fact of defining the latent dimensionality, we necessarily disassociate the 
notions of fractal and of Hausdorff dimensionality. Furthermore, when a 
set's actual fractal dimensionality is 0, its topological dimensionality D T can 
be either 0 (when the set is a dust) or - 1  (when it is empty). Thus the 
inequality D,q/> D r fails to have a counterpart when D~/is replaced by the 
latent fractal dimensionality. 

Other reasons for disassociating the fractal and the Hausdorff dimen- 
sionalities are encountered and discussed in the sequel, and are brought 
together in Part 4. The past association between the two should not be 
mourned, because there are extremely few cases of concrete interest where 
the Hausdorff dimensionality can be computed explicitly and rigorously. 
Fractal dimensionality should remain a "generic" notion, the definitions by 
Hausdorff et al. being specific implementations. 

2.1.2. Intersections, and the Addition Rule for Codimensionali- 
ties. By Introducing "Latent" Fractal Dimensionalities That Can Sat- 
isfy D < 0, One Generalizes the Scope of the Simple Part of This 
Rule, and One Implements an Intuitive Notion of "Degree of Empti- 
ness" of a Set .  Consider, in the Euclidean space R E, the intersection of 
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two sets of respective dimensionalities D '  and D". For the Hausdorff 
dimensionality, the rule of thumb is that the intersection's codimensionali ty 
E -  D is the sum of the codimensionalities E -  D '  and E -  D" ;  but we 
have the following major exception: when this rule yields a negative D, the 
actual D is 0. 

This exception is an irritating complication, and it hides a feature that 
is in fact worth underlining. As background, compare the intersections of 
two planes, a plane and a line, and two lines, all in the space R 4. All three 
intersections are well known to be empty in general, and this is confirmed 
by the rule relative to the Hausdorff dimensionality. But intuition also tells 
us that the intersection of two lines is "emptier" than the intersection of a 
plane and a line, or the intersection of two planes. This loose notion fails to 
be expressed by the value of the Hausdorff dimensionality. On the other 
hand, the seemingly "thoughtless" addition of codimensionalities yields 
- 2 ,  - 1, and 0 for the dimensionalities of the three intersections that we 
consider. Therefore, this addition is not thoughtless at all, and its result is a 
very useful measure of the relationship between two nonintersecting sets. 
Of course, this result is no longer a Hausdorff dimensionality, but it can be 
called a "latent" value of the fractal dimensionality. When the latent value 
is < 0, the actual value is 0. 

2.1.3. Fractal Subordination, and the Rule of Multiplication of 
Dimensionalities. By Introducing Latent Fractal Dimensionalities 
Whose Values in R D May Exceed D, One Implements an Intuitive 
Notion of Degree of Coverage of the Plane by a Set. The process of 
subordination of fractals is a very important one, discussed in detail in 
FGN,  Chapter 32. The basic example starts with the trail of Brownian 
motion, whose dimensionality will be written as a = 2, and "lights" it very 
intermittently: only when time falls within a fractal dust ("Cantor-like set") 
of dimensionality D s. The set of points that are lighted is known to have 
the dimensionality aD s. A generalization of Brownian motion is fractional 
Brownian motion BH(t ), which is investigated in FGN,  Chapter 27 and 
sketched below in Section 2.3.1. This motion's exponent H lies between 0 
and 1, and there is a lower critical dimensionality equal to a = 1 / H .  When 
D > a, the dimensionality of the fractional Brownian trail is a, and the 
dimensionality of the instants when the trail is lighted is, as above, 
the product of dimensionalities a . D  s. However, suppose that D < a 
< D / D s ;  then the dimensionality of the instants when the trail is lighted is 
again aD s, but this quantity is no longer obtained as a product of 
dimensionalities. To allow it to continue to be called a product of dimen- 
sionalities, I propose that, irrespective of the sign of D - a, the trail can be 
said to have a "latent fractal dimensionality" equal to a. This value can lie 
above D. When the latent value is a > D, the actual value is D. 
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2.2. On Several Different Kinds of Scaling ( " l / f " )  Noise: 
Fractional Gaussian Noise Versus White Noise on a Fractal 

Many noises have a scaling observed spectral density, that is, a density 
that is proportional to 1/f~.  Therefore, they are called " 1 / f  noises." While 
the physical mechanisms behind 1 / f  noises remain obscure, several papers 
I wrote in the 1960s (18'~9y have sorted out their geometry. In particular, I 
showed that scaling may be traceable to either of several very different 
reasons, the following three extreme cases being the most important. 

2.2.1. Gaussian Noises. They are familiar to physicists, and are 
best viewed as the derivatives of the fractional Brownian functions B~(t) 
discussed in 2.3.1. They are "on" all the time. 

2.2.2. "Sporadic," "Absolutely Intermittent," Noises. They are 
"off" (equal to a constant--usually to zero) almost all the time, and "on" 
(varying or nonzero) only when time falls within some fractal dust ("Cantor 
set"). The simplest examples of sporadic noises with B > 1 are provided by 
the error sequences first investigated b y  Berger and Mandelbrot in 1962 
(FGN, Chapter 8) and described in FGN, Chapter 8, and by related 
examples in Refs. 18 and 19. One of these examples ~19) was contrived on 
purpose to appear to be Gaussian in one form of analysis and extremely 
non-Gaussian in another. 

2.2.3. "Relatively Intermittent" Noises. They are "on" all the 
time, but most of the time their value is imperceptibly small. They expend 
nearly all their energy over instants that form a fractal dust. They are 
described in FGN, pp. 375-381 and below in 3.2. Records of dissipation in 
intermittent turbulence are the most important example. 

The contrast between a highly anomalous ("nonwhite") noise in ordi- 
nary Euclidean time (2.2.1) and an essentially nonanomalous noise in 
fractal time (2.2.2) is a special case of, and is entirely analogous to, the 
contrast between the diffusions examined in greater detail in 2.3. 

2.2.4. Significance of the Energy in Very Low Frequencies. 
The l / J  spectrum means that very low frequency components have very 
high energy. This manifests itself very differently in the extreme forms of 
scaling noise. In 2.2.1, this energy is due to something that is present: a low 
rumble. In 2.2.2, low frequencies are traceable to something that is absent: 
to the fact that there is no energy variation at all during the long "off" or 
constant periods between bursts of high-pitched noise. An arbitrarily cho- 
sen sample usually will fall in a long gap between noise bursts. Therefore, 
the theory of this process must concentrate on samples that are "con- 
ditioned" to be nonconstant. As conditioned samples of increasing duration 
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T are considered, increasingly long silent periods are observed, and as a 
result the total energy in the high-pitched bursts increases less than linearly. 
As the frequency range over which the spectrum takes the form 1If  B 
increases towards 0, the average distribution of energy moves along the 
spectrum towards the low frequencies. The 1If  8 spectral density seems to 
threaten a low-frequency divergence of "infrared catastrophe," but this 
threat never materializes, because the spectral density is F ( T ) / f  B, with a 
prefactor F that decreases as T increases. 

2.3. Two Well-Understood Forms of Anomalous Diffusion: 
Fractional Brownian Motion, and L~vy Stable Motion 

Sections 2.3 and 2.4 move on from noises to anomalous ("non- 
Fickian") diffusions. Interest has recently (2~ focused on problems 
related to an "ant in the labyrinth," which takes independent random steps 
while restricted to a specified substrate, namely, to a fractal that has been 
previously constructed (by either a nonrandom or a random process). 

The study of this ant would have benefited by being placed against the 
background of two very different anomalous diffusions that are thoroughly 
understood and play a central role in FGN:  these diffusions are fractional 
Brownian motion and L6vy stable motion. This and the next sections 
propose to provide such a background, and to extend the known results a 
bit. The main exhibit is Table I, and its point is that the same basic fractal 
formalism applies to the three anomalous diffusions mentioned in this 
paragraph. One should expect this formalism to apply even more widely. 

2,3.1. The Fractional Brownian Motion BH(t ). This is a cont inu-  

ous function of time, with values in ~D, whose increments are Gaussian, 
have zero mean, and satisfy (BH(t) - BH(O) 2) = Itl 2#, with an exponent 
satisfying 0 < H < 1. The exponent H = 1 / 2  corresponds to ordinary 
Brownian motion, whose increments are uncorrelated--hence independent. 
Exponents satisfying 1/2 < H < 1 correspond to persistent diffusion, whose 
increments are positively correlated on all time scales. And exponents 
satisfying 0 < H < 1/2 correspond to antipersistent diffusion, whose incre- 
ments are negatively correlated on all time scales. The "next step" of BH(t ) 
is highly correlated with all the "past steps," but is allowed to move 
anywhere in a Euclidean space R e. As it moves on, it generates an 
underlying fractal curve. The function BH(t ) on the line is best known to 
many via the vertical sections of my Brown model of landscape, FGN,  
Chapter 28, and it also enters in numerous other models and theories 
described in FGN.  

BH(t ) has been thoroughly studied by mathematicians, as sketched 
(with many references) in FGN,  Chapter 39, and Table I also incorporates 
many facts about it that had not been worth recording until now. 
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2.3.2. The L~vy Stable Motion L~(t). This is a discontinuous 
function time, with statistically independent jumps that are allowed to 
move anywhere in R ~ and follow the probability distribution Pr(U > u) 
= u - " .  As L~(t) moves, it generates an underlying fractal dust, best known 
to many through my crude "Seeding of the Universe" model of galaxy 
distribution, FGN,  Chapter 32. Describing it in detail here would probably 
look repetitive, but Table I includes the properties of L~(t). 

2.3.3. Notation. The letter H (which I picked in 1965; it is the 
initial of H. E. Hurst) is now deeply rooted in the literature on BH(t), and 
the letter a (which L6vy picked in the 1920s) is standard in the many 
papers on L,(t). Therefore, both notations are best left unchanged. To help 
Table I underline the points common to the two processes, it is useful to 
define a as 1/H for BH(t ) and to define H as = 1/a for L~(t). It is of 
course my hope that these letters will also be adopted in the study of the 
ant in the labyrinth and of other independent random work on prescribed 
fractals, where the counterpart of a = 1//H has (confusingly!) been denoted 
by 2 + 0, 2 + 8, 1/Vrw, or D. 

2.4. Comments  on Table  I 

Several distinct fractal sets enter into the study of BH(t ) and of L,(t). 
Table I brings their fractal dimensionalities together and also lists the 
corresponding criticality criteria. The result is a well-defined mathematical 
framework in which one ought to place the study of random walks on 
percolation clusters or on other specified fractal nets. The fractal dimen- 
sionalities are given in the "latent" form introduced in Section 2.1. They are 
functions of the scaling exponents H and a linked by a H =  1. Suppose that 
a fractal of latent dimensionality a overfills the space Ro or some pre- 
scribed fractal having the fractal dimensionality D, in the sense that a >  D; 
then the actual fractal dimensionality is D. When the latent fractal dimen- 
sionality falls below 0, the actual fractal dimensionality is 0. 

Observe that different lines on this table obtain from other lines as 
sums, differences, products, and quotients. The table includes both general 
rules and special cases thereof. 

Range of a or H for B14 and L,. The function B14(t ) requires 
0 < H < 1, hence 1 < a < m. And L~(t) requires 0 < a < 2, hence 1//2 
< H < m. Overall, the whole range of positive values of a and H is 
covered, the subrange [1/2, 1] being covered in either of two ways. 

Range of D / a  or DH. One encounters "recurrent" cases when 
DH < 1 as well as "non-recurrent" cases when DH > 1. 

The "Fracton" Terminology. The Alexander-Orbach Conjecture; In 
the "ant in the labyrinth" problem, the counterpart of the quantity on line 
17 has been called "fracton" or "spectral" dimensionality. (2~) I dislike both 
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terms, but terminology should not matter. The more important point is that 
the basic probabilistic notion in the study of diffusions is not 2HD, but the 
codimensionality HD in line 5. Thus, the best statement of the conjecture 
of Alexander and Orbach (21) is that in every N E, a random walk on a 
percolation cluster recurs to the origin at instants that have the dimension- 
ality 1/3, independently of E. 

Warning Concerning Line 12. In the study of isotropic fractals in 
Euclidean spaces, dimensionalities enter as exponents in expressions of the 
form M(R)ec R ~, meaning "mass in a sphere or interval of linear size 
R ec R D.,, However, the space ND X (time axis) is not a Euclidean but an 
affine space, .in which rotations are meaningless and distance along the 
time axis cannot be compared with the distances along the space axes. In 
such a space, a sphere cannot be defined, R is meaningless, and D cannot 
enter in as exponent. 

Comparison of Lines 4 and 5. For functions in R D, line 5 follows 
!mmediately from line 4, because BH(t ) = 0 when all the D coordinates of 
BH(t ) vanish simultaneously, i.e., in the intersection of the zerosets of its 
coordinates. By the rule of thumb in Section 2.1.2, the codimensionality of 
the intersection is the sum of the codimensionality of the intersecting sets. 

Comparison of Lines 3 and 6. For functions in R D, the existence of a 
common criterion of criticality is simply due to the fact that ~ -  D and 
1 - D / ~  have  the same sign. When D is below ~, the inequality ~ > D 
implies that the trail overfills R D, and the inequality 1 - D / ~  > 0 implies 
that the trail recurs to the origin. When D is above a, the inequality ~ < D 
implies that the trail fails to fill ND, and the inequality 1 - D / a  < 0 implies 
that the trail fails to recur to the origin. This association between overfilling 
and recurrence is intuitively extremely reasonable. 

The Criterion of Criticality D / a  = DH = 1. It appears to be very 
tight. For example, ordinary Brownian motion in the plane satisfies 
H = t / 2  and D = 2, hence it is critical. This motion is everywhere dense, 
and one can say that it fills the plane, but only barely (see FGN, Plate 243). 
And it fails to recur, but fails barely, since a random walk does recur in a 
plane lattice as opposed to the whole plane. On the other hand, ordinary 
Brownian motion on the line H = 1/2 and D --= 1 grossly overfills the line, 
and is well known to recur on a zeroset of dimensionality 1/2 = 1 - 1/2. 
Ordinary Brownian motion does not fill ND with D ) 2, and does not recur. 

Those physicists who do not hesitate to manipulate formal "Euclid- 
ean" spaces of fractional dimensionality will argue that BH(t ) is critical in 
the space R 1/~/--- R ~. 

Comment on Line 10. Facts and Hypotheses Concerning the Order of 
Ramification. The case D = 2 and H = 0.5 yields Brownian motion in the 
plane. I have previously conjectured (FGN, p. 243) that its trails have an 
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infinite order of ramification, in fact, that they are universal (plane) curves 
in the sense of Sierpinski. This was proven by S. Kakutani and Tongling 
(unpublished). 

I now conjecture that the same is true in all the critical cases D H  = 1. 
Further, I conjecture that, when D H  > 1, the order of ramification of the 
trail is the integer part of 1/(1 - 1 / D H ) .  

Comment on Line 11. The Criterion of Criticality D H  = 2. When 
D H  > 2, the graph BH(t ) has no multiple point of any order. 

Comment on Line 13. As a special example, consider two indepen- 
dent fBm, namely B~(t) and BL~"~t~j, and examine B~(t) at those instants of 
time when B~'(t) recurs to its original position BL'(0 ) = 0. This set is 
obtained by subordination, hence its actual fractal dimensionality is 
min{D, Lmin(0, 1 - D / L ) }  = min(D,  min(0, L -  D)}. Three cases must 
be distinguished: L > 2D, D < L < 2D and L < D, yielding, respectively, 
the fractal dimensionalities D (space filling subordinate), L -  D, and 0 
(empty subordinator, hence empty subordinate). The latent fractal dimen- 
sionality is of course to be defined as L - D. 

Comparison of Lines 1 and 12. Effects of Projection. By inspection, we 
have the inequality rain(D, 1/ H )  <~ D + 1 - DH. Attainment of criticality, 
D H  = 1, expresses that equality prevails, meaning that projecting the graph 
on ND in order to obtain the trail leaves the fractal dimensionality un- 
changed. Otherwise, this projection decreases the dimensionality. It is 
inconceivable that dimensionatity should increase by projection, therefore 
the inequality rain(D, 1 / H )  <~ D + 1 - D H  could not have failed to hold. 

The rule of thumb valid in Euclidean spaces is that a set of dimension- 
ality D '  in ~D projects upon [~g (with F < D) on a set of dimensionality 
rain(F, D'). Except at criticality, it is seen that this rule of thumb fails to 
generalize from Euclidean to affine spaces. 

Comparison of Line 13 for D and for F < D. This comparison is 
equivalent to projection from [R D onto ~F. The dimensionality on line 
changes by (D - F)(1 - H).  Again the customary rule of thumb fails to 
generalize from Euclidean to affine spaces. 

3. PART THREE: FRACTALS COME IN MANY SHAPES, 
INCLUDING SETS, MEASURES AND GRAPHS. EACH FRACTAL 
SET HAS A UNIQUE FRACTAL DIMENSlONALITY, BUT 
FRACTAL MEASURES HAVE AN INFINITE NUMBER OF 
FRACTAL DIMENSlONALITIES 

The fractals involved in Parts 1 and 2, and in the bulk of FGN,  are 
point sets, more precisely, compact sets in Euclidean space. The notion of 
fractal, however, extends beyond compact sets. This is one of many reasons 



916 Mandelbrot 

why attempts to define fraetals too soon in too precise a way have turned 
out to be ill-inspired (see Section 4). Special interest attaches to fractals that 
are not point sets but graphs or measures. 

Pure mathematicians like A. S. Besicovitch had extended the scope of 
Hausdorff dimensionality to what I have since proposed to call fractal 
measures, but this extension was never claimed explicitly. My work on 
turbulence (see 3.2) has long made heavy use of fractal measures, and there 
is a chapter on them in Ref. 1; however, I had not foreseen their rapid 
emergence at center stage, and FGN sketches them all together all too 
briefly in a subchapter of Chapter 39, calling them "nonlacunar fractals." I 
immediately ceased to like this term; therefore, jumping into hasty termi- 
nology--a  tendency I have been known to criticize in other writers--is a 
failing to which I am not totally immune.  

Fractal graphs come from a different tradition, that of physics of 
systems in which interactions run between sites that are neighbors on a 
graph and may not run between neighbors in an imbedding Euclidean 
space. References will be given in Section 3.4. 

3,1. Basic Rule: When a Point Set of Interest to Physics is 
Fully Specified, There is a Single Well-Defined 
Fractal Dimensionality D 

Yesterday, when the loose notion of fractal dimensionality was part of 
pure mathematics, there was much fun in devising alternative definitions, 
and either in proving their equivalence or inventing sets for which these 
variants yield different Values. These definitions have been compared in 
Refs. 1, 2 (Chapter 12), and 3 (FGN, Chapter 39). There, as in the rest of 
my work, it is either stated or implied that the cases when different 
mathematical definitions of fractal dimensionality truly disagree are, at 
present, of no interest in physics. Nevertheless, other authors' recent 
reexaminations of the same sets of definitions (and of a few I had thought 
need not be examined) repeatedly seem to yield conflicting dimensionali- 
ties. Some authors to be discussed below have reacted by restricting the 
term "fractal" to one of these definitions. This suggestion is not only 
capricious, but grossly misleading because it suggests differences in kind 
that in fact do not exist. 

To many people, this discrepancy has become irritating, but I propose 
to show it is not serious. Typically, it reveals that it is now necessary to go 
beyond strictly self-similar fractal sets (which have become well under- 
stood, hence are  viewed a s  simple). Increasingly diverse situations that 
intrinsically involve a multiplicity of point sets are often encountered in the 
study of fractal measures and fractal graphs. Thus, the basic rule in the title 
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of 3.1 implies that cases of indeterminacy of fractal dimensionality will 
vanish if this term is never applied to phenomena ("percolation," "tur- 
bulence . . . .  ") only to fully specified sets. 

3.1. First Qualification to the Basic Rule: Not Every Anomalous 
Dimensionality is a Fractal Dimensionality. Typical of scientific termi- 
nology, the term "dimensionality" tends to be used loosely. Whenever an 
expression coincides with dimensionality in the Euclidean case and general- 
izes formally to the fractal case, someone seems tempted to use it to define 
a fresh "generalized" or "anomalous" dimensionality. To police those who 
yield to this temptation would be impossible, yet one must observe that in 
many instances use of the term "generalized dimensionality" reveals a 
careless or unfinished investigation. Dimensions that multiply without 
necessity (to paraphrase William of Ockham) must not be encouraged. 
Anyhow, as of today, the well-defined dimensionalities whose values differ 
from the fractal dimensionality for many point sets appear to be irrelevant 
to physics, 

First Example: The Fourier Exponent. An exponent DF, often called 
Fourier dimensionality (FGN, p. 360), enters in some fine points at the 
interface of arithmetic and Fourier theory. For the  so-called Salem sets, 
O F ~ D. For non-Salem sets, O F < O. However, this inequality expresses 
that a non-Salem set's O F is dominated by the behavior of relatively few 
and isolated Fourier coefficients. Their values are of no present interest in 
physics. Thus, D F is of interest only when it reduces to D, in which case it 
provides an alternative way of calculating D. Otherwise, it provides a 
bound for D, but this bound is too loose to be useful and may be extremely 
difficult to evaluate. For further comments about  so-called dimensionalities 
that are overly affected by arithmetic, see FGN,  p. 362, paragraph 2, 

Second Example: The Mass Exponent in a Random Fractal Set. An 
important property of fractal dimensionality is that, given a fractal point set 
with the fractal dimensionality D, the mass contained within a ball of 
radius R centered on this Set is M ( R )  ~ R D. This role of dimensionality is 
so essential that, whenever a power law rules the main-radius relation, one 
is tempted to say that its exponent is yet another generalized (or anoma- 
lous) dimensionality. 

For example, the anomalous mass exponent  of the random fractals 
that F G N  p. 123 advances as models of percolation clusters, is not a fractal 
dimensionality. One may argue about the definition of fractal dimensional- 
ity but it must remain a property to be attached to specified point sets, not 
to random sets or other ensembles of sets. 

In the early days of the use of fractals in the study of percolation 
clusters, (7~ i t  has been asserted that, when there are alternative ways of 
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measuring the mass in a sphere of radius R, several values can be assigned 
to the fractal dimensionality. This conclusion gave rise to the feeling that 
fractal geometry is marred by indeterminacies and resulting "fuzziness." In 
fact, D is perfectly well defined for each of the sets involved in percolation. 
The seeming fuzziness was merely due to the physicists' custom of neglect- 
ing (or spurning) direct geometry. To dwell exclusively on indirect descrip- 
tions via analytic properties seems to put many different exponents on the 
same level. As stated in the introduction, geometry is essential and must 
revive. 

Third Example: The Diameter Exponent in Trees. At points where 
trees branch out (FGN, Chapter 17), the branch diameter d on the root side 
and the branch diameters d '  and d" on the leaf side are often linked by a 
relation d A = d 'a + d "~. Some authors call A a dimensionality and I briefly 
called it a paradimensionality, but I took this term back because A is surely 
not a fractal dimensionality. The same remarks apply to the Besicovitch 
and Taylor exponent (FGN, "warning" at the end of p. 259). 

3.1.2. A Basic Qualification to the Basic Rule: Many Problems 
in Physics Involve More Than One Fractal Set. This paper has or wil l  
consider several classes of examples. 

First Class of Examples (Sections 1.1.4 and 1.1.5). In statistical phys- 
ics, the study of percolation involves the clusters at criticality, but also their 
boundaries and other sets such as the multiply connected ring portions 
(taken either singly or in various combinations). An even more elementary 
example is that of Brownian motion, with its trails, zerosets, hulls (FGN, p. 
243), and the like. 

Second Class of Examples (Section 3.2). Increasingly, for example in 
the study of turbulence and of strange attractors, one has to deal with 
fractal measures. By contrast, it is necessary to become aware of the fact 
that all fractals encountered in the earliest applications were compact 
fractal sets. The mathematical notion of compact set is thereby acquiring a 
concrete physical meaning, because the full specification of a fractal 
measure is necessarily equivalent to an infinity of distinct compact fractal 
sets. 

Third Class of Examples (Section 3.3). Numerous fractal sets of 
interest decompose naturally into combinations of compact fractal sets, 
whose individual "fractal eigendimensionalities" may be of interest. 

Fourth Class of Examples (Section 3.4). Different studies of the same 
fractal may imbed it in spaces endowed with different notions of distance, 
e.g., Euclidean distance or graph distance. These sets should be considered 
as distinct from each other. 

3.1.3. Converse of the Remarks in Section 3.1.2. Up to now, 
whenever the impression has arisen that the application to the same 
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problem of several different definitions of D yields distinct values (and 
when no error was made), the different definitions have always turned out 
to be in fact relative to different compact sets implicit in the same original 
problem. 

Often, these sets had previously escaped explicit attention, which 
justifies after the fact the labor invested in comparative testing. 

When faced with fresh instances of conflicting estimates for the fractal 
dimensionality D, I seek to eliminate the generalized dimensionalities that 
are not fractal, and undertake a search for sets to which the different 
genuinely fractal estimates might be allocated as D's. This reaction was of 
course founded upon a belief in the absolute primacy of geometry over 
analytic refinement. This belief is constantly encouraged by the fact that, 
thus far, every would-be D that cannot be allocated as the fractal dimen- 
sionality of any set has indeed turned out not to be fractal, as explained in 
3.1.2. 

3.2. Fractal Measures, and a Fully Studied Example of Their 
Representation as "Composites" of Compact Fractal Sets 

One concrete aspect of the complications and the opportunities im- 
plicit in the assertion in Section 3.1.3 first manifested itself between twenty 
and ten years ago, when my study of noise introduced into physics diverse 
mathematical objects I now call fractal measures. In early investigations, 
this notion did not have to be explicated, because it was in one-to-one 
correspondence with the notion of compact fractal set. One example was the 
derivative of the Devil's staircase, which is a measure that vanishes outside 
of a compact fractal set, namely, the Cantor dust, and is distributed on this 
set in "fractally homogeneous" fashion. I call such measures "absolutely 
intermittent." I used them long ago to provide the proper geometry for 
"absolutely intermittent noises" (2.2.2), and soon afterwards for galaxy 
distributions and for the Novikov-Stewart  model of the "absolute intermit- 
tency" of turbulence. More interesting are the "relatively intermittent" 
fractal measures, which I first used to provide the proper geometry for 
"relatively intermittent noises" (2.2.3) and soon afterwards for a corrected 
form of the Kolmogorov model of "relative intermittency. ''(25'26'27"28) They 
have attracted the attention of excellent mathematicians (29'3~ and are of 
interest in meteorology. (31} Now, some facts about fractal measures have 
been rediscovered by other authors, (32'33~ and they are also used to model 
those fractal ("strange") attractors to which fractal sets (34~ are not applica- 
ble. 

3.2.1. A Vivid Example of Fractal Measure: Gold Mines. In my 
interpretation and elaboration of the de Wijs model of the distribution of 
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minerals (FGN, p. 376), every square on the surface of the Earth carries 
some gold. However, the overwhelming bulk of the gold (arbitrarily close to 
100%) concentrates within a small compact fractal set on the surface of the 
Earth. And if one is only interested in gold of high and increasing purity, 
one must restrict one's search to increasingly smaller compact fractal sets. 
Each of these sets can be approximated by a fractal whose fractal dimen- 
sionality decreases with increases in the desired purity. 

A limit case of this model allows all of the gold to be restricted to a 
fractal whose dimensionality is < 2, but of course above the dimensionality 
of the set where gold is concentrated. 

Clearly, a fractal measure is much more involved mathematically than 
a compact fractal set. To put it simply, a set is identical to its indicator 
function, which is equal to 1 within this set and to 0 outside, while a 
measure is identical to a much more general function, and an increasingly 
detailed description of a fractal measure demands the introduction of an 
increasing number of fractal sets, each with its own fractal dimensionality. 
Reference 1, Chap. 9, and FGN,  pp. 375-381 covers my own work circa 
1974, and refers to the work of Besicovitch and other older mathematicians, 
and of J. Peyri6re, J. P. Kahane, and other mathematicians since 1974. 
References 32 and 33, which largely overlap with old work, have stimulated 
wide interest. However, Ref. 32 asserts that a fractal measure has two 
dimensionalities, and chooses to apply the term "fractal" to only one of 
them. This assertion has no merit. The two quantities in question are the 
fractal dimensionalities of different sets implicit in the same fractal mea- 
sure. Reference 33--which I find difficult to follow in detail--does not 
distinguish between fractal sets and fractal measures; it rediscovers the 
continuous infinity of exponents in Refs. 26 to 30, and labels many of them 
"generalized dimensionalities" without attempting to relate them to the 
fractal measure's geometry and without obtaining their values explicitly, 
and does not investigate the invariant fractal measure I had introduced. 

Besicovitch Set. A. S. Besicovitch and his students made profound 
studies of the set of those points on [0, 1] that have an "abnormal" decimal 
development, namely, of points for which the relative numbers of occur- 
rences of the "decimal" g in the base b tends to the limits pgt that are not 
all equal to 1lb. This deserves to be called the Besicovitch set. They proved 
that its Hausdorff-Besicovitch dimensionality is DHB = --~pglOgpg. On 
the other hand, this set is Self-similar with a similarity dimensionality equal 
to Dss = logb/logb = 1. Hence DHB 4 = Dss. This discrepancy is very pecu- 
liar a priori, but is put in perspective when it is realized that the closure of 
the Besicovitch set, i.e., this set plus its limit points, is the interval [0, 1]. 
Thus, the Besicovitch set is not compact, and Dss picks up the fractal 
dimensionality of its closure. 
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Roughening Interpolation. The Besicovitch Measure. The Besicovitch 
set is associated with the Besicovitch measure. It could be introduced to 
physicists as a special case of the renormalization process in 3.2.3, but the 
usual construction is different and proceeds by a form of "roughening 
interpolation." (A recent expository article (35) is worth pointing out.) One 
starts with a uniform distribution of a unit mass on [0, 1], then one 
redistributes this mass so that the successive subintervals of length l i b  
carry the masses pg adding to 1. Then the mass in each successive subinter- 

val of length l i b  2 is again redistributed in the same ratios. 
Asymptotically, the mass in the interval [0, t] is a nondecreasing 

function M(t). It has a zero derivative at almost all points t, but every 
interval It', t"], however small, contains some mass. One may label it a n  
"eroded Devil 's staircase." Its increase occurs entirely on the above-defined 
Besicovitch set. Historically, the construction may have been touched upon 
by Lebesgue, but it deserves to be named after Besicovitch, who spent a 
lifetime studying it. For a brief moment,  I had thought it was my discovery, 
and the  current interest in fractals leads to parts of its theory being 
rediscovered again under diverse curious labels. (The worst was "prob- 
abilistic fractal," apparently inspired by the fact that the letter pg seems to 
denote a probability; I dissuaded its author from using it anymore, but 
some withdrawn preprints have lasting effects.) 

Measures and Fraetal Measures. A measure is simply the differential 
of a nondecreasing function f (x)  that is not differentiable. One writes the 
measure as df(x), but one always examines it through integrals; whenever 

�9 possible, these integrals are taken over intervals. For an ordinary differen- 
tial, f~+~df(x)cc e, but for a general measure, f~+~df(x) is not ~ ~. For 
many  measures of interest in mathematics, and now also for many more 
measures constructed for the purposes of physics, f~,+~df(x)ec e ~ with the 
exponent /? a function of u. In many  cases, /? takes the same value for 
almost all values of x; an example is white noise, which is the measure 
differential of Brownian motion. Very tentatively, we shall say that such 
measures are fractal measures; Much more can be said to comment  and 
elaborate this definition, but this is not the proper place to do so. 

3.2.2. The Fixed-Point Random Variables and Random Fractal 
Measures Introduced by Mandelbrot(26'27~: Background and 1974 
Construction. Some background from little-known probability theory is 
useful. Let X(nl, 1) be a semi-infinite array of independent and identically 
distributed random variables in E-dimensional Euclidean space, the index 
n 1 being written as E integers in the base b. Adding all the X(n l, 1) that 
have the same index n 1 except for the last digit, creates an array X*(n 1, 2). 
The index n 2 is obtained by chopping off the last digit, and the unit of 
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space becomes b times larger for X*(n 2, 2) than for X(n~, 1). The next step 
"renormalizes" X*(n 2, 2) by forming the array X(n2,2 ) = AX*(n2,2 ) + B. 
By repeating on X(n  2, 2) the same operation of renormalization, one creates 
a twice renormalized array X(n3,3). Long ago, in the 1920s, Paul L6vy 
defined the semistable random variables as being the variables one can 
obtain (with suitable choices of A a n d  B) as the fixed points of this 
renormalization. He showed that the logarithm of the Fourier transform of 
the probability distribution must be of the form -cuSP( log  u), where P(x)  
is a periodic function of x, of period equal to logb. In order for a random 
variable to be semistable for every value of b, P(x )  must be a constant, and 
the random variable is best called L6vy stable. The L6vy-stable fixed-point 
random variables (r.v.) are very important in the theory of fractals (e.g., 
Section 2.3.2), but the semistable fixed-point r.v. have drawn very little 
attention, because of the indeterminancy and complications brought in by 
their dependence on an arbitrary function P(x).  

After these preliminaries, let us return to fractal measures. Man- 
delbrot (26'2v~ has discovered that in the application to noise and turbulence 
it is not only inevitable but essential to introduce a somewhat analogous 
process of renormalization. And the somewhat analogous (though different) 
indeterminacy and complication present in the resulting random variables 
are concretely very important. The key ingredient in this more general 
renormalization is to replace ordinary addition by randomly weighted 
addition. The weights are a semi-infinite array of independent identically 
distributed r.v. with row index n and column index i, W(n, i). Now we start 
with X(n  1, 1) = 1, and the first step of renormalization is to form the array 
X*(n2,2 ) = ~ W(nl ,  1)X(n~, 1) with the sum carried over the indexes n I of 
the form n 2 followed by an integer between 0 and b -  1. Of the many 
classes of W examined in Ref. 26, the simplest, and only one that has been 
studied further, (2s'29'3~ is the class characterized by W >/0, and ( W )  = 1. 
The proper second step in renormalization is then X(n  2, 2) = b -  eX*(n2, 2), 
and (X(nk ,  k))  ~ 1. 

The first object of study is, then, the fixed-point random variable 
X = l imk_~X(nh ,k  ) that is invariant under renormalization. The second 
object is to interpolate X ( n k , k  ) into a random function X(n  1,k) and to 
study the contributions to X(n  1 , k) from the addends X(n  I , k) = X(nl ,  k) - 
X(n,~ - 1, k) originating in the little cubes. 

3.2.3. The Kolmogorov-Yaglom Mass Exponents of X, M(h)= 
E h -  1Ogb(Wh). The most elementary characteristic of X ( n l , k  ) is the 
sequence of its moments. A quick argument shows that ( X ( n j , k ) ) e c  n (  
and, more generally, that ( X k , ( n l , k ) ) e c  nl M(h), where M ( h ) =  E h -  
lOgb(W h) is called mass exponent of order h. However, this quick argu- 
ment is not exact: I have pointed out that it holds only if (Xk (n~ ,k ) )  is 
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finite, which is not necessarily the case. In fact, it will result from 3.2.6 that 
(Xk(nl,k)) < oc only if M(h) > E. 

Several of the M(h), both for integer and noninteger h, have direct 
physical meaning. For example, M(2) rules the correlation properties, and I 
showed (28) that M(2/3)  rules the correction to the 5/3  exponent in the 
Kolmogorov spectrum. Thus, knowledge of M(2) and M(2/3)  suffices for 
the second-order properties. But a full specification of X requires a full 
specification of W. In the usual cases (as identified by the so-called 
"moment problem" of analysis), it suffices to know ( W  h) for integer h. 

As implied in the second example of 3.1.1, these mass exponents are 
not fractal dimensionalities, and to call them generalized dimensionalities 
would serve no purpose. 

3.2.4. The Critical Function C(h). It will be seen in 3.2.5 and 
3.2.6 that all the fractal dimensional properties of X are ruled by W 
through a function I introduced indirectly in 1974 and now write in the 
form of the "critical function" C(h)= logb(Wh)/ (h-  1). For h = 1, by 
the L'Hospital rule, C(1)=  (WlogbW) ,  which is > 0 (because x logx is a 
cap-convex function hence (Wlog  W)  > (W) ( l o g  W) = 0). The function 
C(h) is defined for all real h from - m  to + oo; it is continuous and 
nondecreasing; it is cup convex; C(m) is finite if and only if W is 
bounded; C ( - ~ )  is finite if and only if 1 /W is bounded; i f ( W  h) = ce 
f o r h > h  + (or f o r h < h - ) ,  then C(h)=m f o r h > h  + (or f o r h < h  ). 

Case Where C(h) is Constant. The simplest case is when W = 0 with 
the probability 1 - p  and W = l ip  with the probability p, therefore C(h) 

-1Ogbp. This case is called "absolute curdling," as explained in FGN, p. 
210. Everything of interest depends on the scalar parameterp. The reason is 
that the fractal measure of absolute curdling concentrates in fractally 
homogeneous fashion on a Cantor-like random dust, a compact fractal set. 
This set's fractal dimensionality is - logbp, and it determines everything of 
interest. 

Cases Where C(h) Varies with h. The corresponding curdling is 
"weighted" (FGN, p. 378), and the "parameter" that determines the fractal 
properties is not one number, but the whole function C(h), i.e., an infinity 
of numbers. Fortunately, the fractal properties can be ranked in order of 
importance, therefore most problems involve only C(1) and perhaps a few 
other values of C(h). 

Alternatively, one may approximate a complicated C(h) by either of 
several simple functions. The very simplest is a constant. To write C(h) =-- 
C(I) = ( W l o g b W )  amounts to approximating weighted curdling by the 
absolute curdling corresponding to p = b-C(l). 

The second simplest approximation is C(h) proportional to h. It is 
exact when W is lognormal and ( W ) =  1, hence it is best to write 
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C(h) = txh/2, in order to match the notation Kolmogorov uses in his 
important (though self-contradictory) lognormal model of intermittency. 

Again, however, a full knowledge of W requires all the integer order 
value of C(h). 

3.2.5. h = 1 and the Critical Dimensionality C(1) = ( W l o g  b W )  
Hence the Fractal Codimensionality 1 - C ( 1 ) - - o f  MandelbrotJ 26,27~ 
The first task l set up and solved in 1974 is to derive the fractal dimension- 
ality of the point set which carries the bulk of the local contributions. In the 
language of 2.1. the latent value D L was found to be D c = C ( 1 ) =  E -  
( W l o g 6 W ) .  When D L < 0. the actual D is 0. This possibility is easy to 
understand, as long as <, Wlog W) < oe. It suffices to carry out the same 
renormalization argument, using the same weights but working m a Euclid- 
ean space with dimensionality E + > ( W l o g  h W).  The set of concentration 
of the resulting fixed point distribution is of dimensionality E " -  
( Wlog b W). Next. one intersects by the original space of dimensionality E, 
and one finds that the intersection is almost surely empty, its degree of 
emptiness being measured by D c. Thus, E = C ( 1 ) =  ( W l o g b W )  is a 
critical dimensionality associated with the weights W. This C(1) may be an 
integer, for example if C(h)=  Ixh/2 with ~ an even integer. But in the 
general case, C(1) need not be an integer. It might have been an ill-defined 
"continuous dimensionality," however. 3.2.9 will show that it can be 
interpreted rigorously as the fractal dimensionality of a fully specified 
fractal point set. 

[In probabilistic terms, D c < 0 implies that l i m k ~ X ( n  k, k) is degener- 
ate, i.e., almost surely equal to 0. One deals with one of those cases beloved 
by mathematicians, when limk__,~o(X(n k, k))  = 1 but (limk_~o~X(nk, k))  = 0. 
Physicists do not expect such cases to be of concrete importance, but the 
present occurrence is not only important but very simple.] 

3.2.6. h > 1 and the Critical Dimensionalities C(h)= 1ogb(Wh)/ 
(h - 1) of Mandelbro t .  (26'2v) The second task I set up and solved in 1974 
is to determine the integer or noninteger moments of X = limk_,ooX(nk, k), 
assuming that D L = 1 - C ( 1 ) >  0 so that the limit random variable X 
is nondegenerate. The key findings, including those of J. Peyri6re and 
J. P. Kahane, are these. When the equation C(h) = E has a root > 1, to be 
denoted by h = a(E) ,  then ( X  k) < co for h < a (E)  and ( X  h) = oe for 
h > a(E) .  This function a ( E )  is continuous and increasing in E. When 
C(1) = E, one can write a (E)  = 1. When C(h) = E has no root /> 1, then 
( X  h) < co for all h, and one can write a ( E )  = co; for example if W is 
bounded so that C(oo) < oe, then ( X  h) < co for all E /> C(oo). Observe 
that C(h) - E < 0 means log (Wh)  - E(h - 1) < 0, therefore is equivalent 
to the condition M(h)  > E announced in 3.2.3. 
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Now use the same W to renormalize in spaces of varying E. In 
absolute curdling C(h)= - l o g  p, hence E > - l o g  p leads to a = m and 
E < - l o g  p leads to D L < 0. In weighted curdling, there corresponds to 
each h v ~ 1 the critical dimensionality C(h) such that <Xh> < m if and only 
if E > C(h). The meaning of a noninteger C(h) is, again, explained in 
3.2.9. 

3.2.7. The C(h) as the Latent Fractal Codimensionalities of 
Suitable Level Sets of Ax. From 3.2.5, almost all of the variation of X 
occurs on a set of latent codimensionality C(1). Similarly, one finds that 
almost all the contributions to <Xh> come from a set of latent codimension- 
ality C(h). 

3.2.8. h = 0 and the Critical Dimensionality C(0). Weighted cur- 
dling includes absolute curdling as a special case. More generally, weighted 
curdling allows for either W > 0 or W >/0. When W > 0, t he  fractal 
measure is relatively intermittent over the whole of R e. When W >/0 the 
fractal measure is relatively intermittent over a subset of R e that is ob- 
tained by absolute curdling, and whose latent fractal dimensionality is 
logb[be< W~ = E + logb< W ~ = E -  C(0). [Terminological aside: Refs. 
32 and 33 restrict the use of the term "fractal" to the dimensionality 
E -  C(0), whereas we saw that the measure generated by W implies an 
infinity of other fractal point sets of interest, each with its fractal dimen- 
sionality.] 

As in 3.2.5 and 3.2.6, there is a critical E equal to C(0). When W > 0, 
hence C(0) = 0, this critical E is 0. When C(0) > 0, the significance of the 
condition E > C(0) results from familiar facts about fractals, FGN,  pp. 
213-214. 

3.2.9. Interpretation of the Noninteger Values of E. A Form of 
Subordination as Applied to Fractal Measures. I t  is fruitful to con- 
sider an alternative presentation of the results in 3.2.8 relative to the special 
case when W >/0 and E > C(0). The first step is to introduce a random 
variable W* for which the value W = 0 is disallowed and the probability 
Pr (W = 0) = 1 - < W ~ is redistributed among all W > 0. This new weight 
W* is such that, for every interval I, one has Pr(W* E I ) =  Pr (W E I )  
/ P r ( W  > 0). 

Using this W*, weighted curdling using W on the whole R E Can be 
viewed as equivalent to weighted curdling using W* on a subset of R E 
whose fractal codimensionality is C(O). In this sense, the inequality C(O) > 
0 should lead us to deemphasize the dimensionalities E -  C(h), and to 
feature instead the dimensionalities E -  C(O)- C(h)= E + log<W ~ - 
log< Wh> = E - log[< Wh>/< W~ = E - C*(h). 
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Conversely, consider a W such that the critical dimensionality C(h)  is 
not an integer. One can "lift up" C(h)  to any desired integer value above 
C(h),  by choosing new weights W + that can vanish, whose probability of 
being positive is ( W  + ) < 1, and such that l o g [ ( W h ) ( W  + ) ] / (h  - 1) is the 
desired integer. When C(h)  = Ixh/2 with ~ an odd integer, one W + suffices 
to ensure that all the C(h)  become integers simultaneously. 

3.3. Fractals with a Nontrivial Eigen-Decomposition 

The complications and the opportunities implicit in the assertion made 
in the title of 3.1 find a homey example in certain Cantor dusts. Start with 
all the (real) numbers in [0, 1] represented in the counting base b > 3. The 
reals whose representation fails to include 2 form a Cantor dust C' of 
dimensionality log(b - 1)/logb, and the reals whose representation fails to 
include either 2 or 4 form a Cantor dust C" that is contained in C' and has 
the dimensionality l o g ( b -  2) / logb.  What about C = C ' -  C"? This is a 
fractal dust whose Hausdorff dimensionality D is the same as that of C', 
but clearly D gives an incomplete description of C. For certain uses, the 
dimensionality of C" may also be important. 

Furthermore, certain methods of evaluating the fractal dimensionality 
involve a matrix that Ref. 16 calls transfer matrix of a fractal, TMF. Let X~ 
be the leading eigenvalue of the TMF, the other eigenvalues being X i. The 
expression log X l / log b happens to coincide with the dimensionality of C ' .  
For C'  or C" taken separately, there are no other nontrivial eigenvalues. 
But for C'  - C"  there is a second nontrivial eigenvalue X 2 that happens to 
be b -  2, hence the dimensionality l o g ( b -  2) / logb.  Clearly, the eigendi- 
mensional sequence can serve to distinguish between sets that have identi- 
cal overall fractal dimensionalities. 

Given the above C, the above complication could be predicted, be- 
cause the set C does not include its limit points; it is not closed hence is not 
compact. The smallest compact set including C is C', and Hausdorff's form 
of fractal dimensionality "seeks out" this compact set. Then the compact 
set C" is defined as a difference, hence the decomposition C = C ' -  C" 
could be reconstituted even if one did not know it in advance. 

3.4. Fractal Graphs, Dimensionality When the Shortest Distance 
is Measured Along Edges 

FGN concerns fractals imbedded in Euclidean space, the underlying 
distances being Euclidean, except that in a few cases they are measured 
along circles. On the other hand statistical physics often deals with interac- 
tions that propagate solely along the bonds in a graph that is not imbedded 
in any Euclidean spaces. This graph may be constructed recursively, as for 
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example in the work of Nelson and Fisher (36) and of Berker and Ost- 
lurid. (37~ However, the notion of fractal extends readily to other metric 
spaces. In particular, as pointed out by Suzuki, (38) the notion of similarity 
dimensionality extends to graphs, the graph distance between nodes being 
defined (as usual) as the minimum of the number of links along the paths 
joining these nodes in the graph. (Suzuki had originally referred to this 
similarity dimensionality as an interpolated topological dimensional#y, but 
recognized that this notion is in fact not topological. It is metric but 
non-Euclidean.) The scope of the graph similarity dimensionality extends 
beyond fractals, since it is also defined for Cayley trees (for which it is 
infinite) and for other graphs that cannot be interpolated. 

Many truncated fractals in Euclidean space can also be viewed as 
graphs and endowed with the graph distance. In the example of the 
Sierpinski gasket, the ratio of graph to Euclidean distance is contained 
between two finite and positive numbers, so their dimensionalities defined 
via these alternative distances are identical. But other truncated Euclidean 
space fractals behave differently. Consider for example a Koch curve 
whose generator is a broken line without branch or ring. The fractal 
dimensionality based on the graph distance is 1, independently of the 
generator. Therefore, all such fractal Koch curves are equivalent when 
viewed as fractal graphs; this expresses the fact that topologically they are 
straight lines. Consider also the diamond fractal lattice, which can be 
endowed either with graph distance, as in Berker and Ostlund, (37) or with 
Euclidean distance. The graph fractal dimensionality is 2, and the Euclid- 
ean fractal dimensionality can take any value above 2. 

3.4.1. Random Walk on a Fractal Graph. The graph's fractal 
dimensionality D and the walk's latent fractal dimensionality c~ = 1/H can 
be defined as in Section 2.4. When the distance is Euclidean, the values of 
D and of a both depend on the actual imbedding that is chosen. But the 
ratio D / ~  is independent of the imbedding. Furthermore, it takes the same 
value as when the graph distances are used. This should have been 
expected, because the ratio D / ~  is the codimensionality of the instants on 
the time axis when the walk recurs to its point of departure. On the time 
axis, the metric offers no choice: time is always endowed with Euclidean 
distance. 

3.4.2. Solution of a Paradoxical Conflict Between Two Evalua- 
tions of D. The fractal dimensionality D is often evaluated via the 
relation "mass M(R) in a sphere of radius R cc RZ). '' Actually, this is not 
the primary definition of D and the relation M(R) cc R D is not expected to 
hold for all origins on the fractal, only for "almost all origins." This clause 
"almost all" is almost always disregarded by physicists. Usually, there is no 
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harm, but there are conspicuous examples where disregarding it leads to a 
paradox. 

One such example is the diamond fractal lattice. To be specific, endow 
it with Euclidean distance, taking as initiator the segment [0, 1] and as 
generator the square of diameter [0, 1]. The embedding space dimensional- 
ity must be sufficiently high, but otherwise does not matter. The similarity 
dimensionality is D = log4/log~/2 = 4. Now compare the masses within 
spheres of radii 2 -k/2 centered on 0: it is easy to see that these masses scale 
like R 2 instead of R 4. The same holds if the origin is any other vertex of the 
generator of diameter [0, 1]. 

Here is the explanation. The above origins, and all the other conspicu- 
ous points, are generated by a finite number of iterations, and after that 
remain pinned down. They constitute the "rational points" of the lattice, 
and are denumerable, while the irrational points obtainable only by infinite 
interpolation are nondenumerably infinite. Hence, the rational points are 
negligibly few compared to the irrational points. An origin chosen at 
random will be an irrational point. An irrational point is buried in an 
infinite sequence of approximating boxes whose sides downscale like ~-  
and whose contents downscale like 4. For these points, D = 4, as it should. 
When a point is generated by a finite but large number of stages of 
construction, in a small box around it, M ( R ) e c  R 2 but in a large box 
M ( R )  ~ R 4 

An analogous issue arises with the notion of order of ramification 
(FGN, Chapter 14), when it is defined in the mathematicians' fashion, b y  
interpolation. For the Sierpinski gasket, the order of ramification is 3 for 
most points, but it is 4 for the rational points, which are the only ones seen 
on approximate illustrations. The order of ramification defined by extrapo- 
lation is always 3. 

4. PART FOUR: THE DEFINIT ION OF FRACTALS 

The reader must have noticed that, while the notion Of fractal dimen- 
sionality was being "opened up" on its latent form (Section 2.1), and while 
its unicity was being proclaimed (Section 3), this paper advanced no 
definition of either "fractal" or "fractal dimensionality." Let me elaborate 
- - though  I do know that having coined these terms gives me no permanent 
control of their use. Today, I use the term "fractal dimensionality" generi- 
cally, as equally applicable to numerous, but not all, specific definitions of 
anomalous dimensionality, and I try not to have to define "fractal." 
Yesterday, in many places in Refs. 2 and 3, I had made half-hearted 
attempts to use fractai dimensionality as synonym to Hausdorff-Besicovitch 
dimensionality, D H, and I had given the "tentative definition" of a fractal 
set, as being a set for which D H > D r. Today, I think both attempts were 
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misled. Both had been carefully avoided in my earliest essay (1) (in French). 
I regret having later been swayed by the notion that the short/term purpose 
of gaining acceptance for the study of fractals demanded such definitions, 
at least tentative ones. Furthermore, I have sometimes let my pen slip and 
describe Du > D T as the definition of a fraetal instead of being precise and 
referring to a fractal set. The more casual wording did not allow for the 
introduction of fractal measures', which (as described in Section 3) I had 
been using since 1974 at least, but which had not come to the fore until 
recently. All that brought no durabie harm, but has tended to bring 
confusion to the physicists, and to be disregarded by the mathematicians. 
Anyhow, the definitions' short-term purpose has by now been fully 
achieved; they may have been a useful crutch for a while, but have outlived 
their usefulness. 
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